
The AppleEvent Builder/Printer

Apple Events The Æ Builder/Printer
Version 1.1

Jens Peter Alfke
12 August 1991

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
User Programming Group
© Apple Computer, Inc. 1991

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Contents

Contents..iii
Introduction...1

OK, What Is It? 1
Just How Stable Is It, Anyway? 2
What Are All Those Files? 2
Disclaimer 3

How To Call the Functions...4
AEBuild 4
AEPrint 5

Descriptor-String Syntax...6
Basic Types 6
Coercion 7
Lists 7
Records 8
Substituting Parameters 9

Descriptor-String Grammar.......................................10
An Example & Timing Comparison............................12

C Code Using Object-Packing Library 12
Descriptor String 14
AEBuild Call 15
Timing Conclusions 16

The Demo Program..17
The Header Files..18

AEBuild.h 18
AEBuildGlobals.h 19
AEPrint.h 19

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
Introduction

OK, What Is It?

Even with the helpful new Object Support Library routines that assemble
common Apple Event object descriptors, building descriptors is still a
pain. I’ve written a library of two functions that make it quick and easy to
build or display Apple Event descriptors.
The AEBuild function takes a format string — a description in a very simple language of an
Apple Event descriptor — and generates a real descriptor (which could be a record or list) out
of it. The AEPrint function does the reverse: given an Apple Event descriptor, list or record, it
prettyprints it to a string. (The resulting string, if sent to AEBuild, would reproduce the original
AEDesc structure.)

AEBuild can plug variable parameters into the structures it generates — as with printf, all you
do is put marker characters in the format string and supply the parameter values as extra
function arguments.

The benefits of using this library are fourfold:

❉ It’s easier for you to write the code to build Apple Event structures. You only
have to remember one function call and a few simple syntax rules. Your resulting code
is also easier to understand.
❉ As of version 1.1, your code is faster: AEBuild is at least twice as fast as the
regular Apple Event Manager routines at constructing complex structures.
❉ Your code is smaller: the code for AEBuild and the AEStream library is about 5k
in size, and the overhead for each call is minimal. (Most of the descriptor string consists
of the same four-letter codes you’d be using in your program code anyway, and the
strings can even be stored in resources for more code savings.)
❉ AEPrint helps in debugging programs, by turning mysterious AEDesc structures
into human-readable text.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Just How Stable Is It, Anyway?

I’ve tested this code out, and verified that AEBuild runs reliably on a moderately
complex expression, produces exactly the same Apple Event structure as does the original C
code, and has no memory leakage. AEBuild has also been used in constructing test programs
for the Object Support Library. These functions have not, however, been extensively tested. (See
the disclaimer below.)

In addition, one bug was discovered and fixed since the first (1.0a3) release. See the release
notes for more information.

In version 1.1, AEBuild now uses my nifty new AEStream library instead of the Apple Event
Manager routines. This led to a threefold increase in speed, but be warned that the new code
has not been as thorougly tested. If you encounter problems, try switching back to version
1.0a4 (available on Developer CD #8) and see if they go away.

I have written two programs so far that use AEBuild and AEPrint. The first is an MPW tool that
converts an input string to an AEDesc, then converts it back and prints the results. (This tool is
available in the distribution folder. It’s very useful for checking that your descriptor strings are
syntactically correct. It does not, however, handle parameter substitution.)

The second is a timing tool that determines the average time to run the example code given
later on in this document. The results of this test are given along with the sample code.

The libraries are being used in other places as well, such as Ed Lai’s AESend tool.

What Are All Those Files?

Here’s what you get:
Release Notes Notes on the latest release.
AE Builder/Printer doc This document.
AEBuild.o MPW library of AEBuildfunction.
AEBuildWithGlobals.o Ditto, but with the extra code and globals.
AEPrint.o MPW library of AEPrint function.
AEBuild.h Interface file for AEBuild.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
AEBuild Globals.h Global variable declarations, for use with the AEBuild/Print

Global library.
AEPrint.h Interface file for AEPrint.
AEBuildDemo MPW tool for trying out AEBuild descriptor strings.
AEBuildDemo.c Source code for the tool.

You’ll also need:
AEStream.o The AEStream library; should be available near where you

found AEBuild. Look for a folder inside this folder or its parent
folder.

Disclaimer

THIS SOFTWARE HAS NOT BEEN PAINSTAKINGLY TESTED BY APPLE’S
RUTHLESSLY EFFICIENT QUALITY ENGINEERS. NEITHER APPLE COMPUTER,
INCORPORATED, NOR THE AUTHOR OF THIS SOFTWARE MAKE ANY LEGALLY
BINDING CLAIM THAT THIS SOFTWARE WILL DO ANYTHING IN PARTICULAR
BESIDES USE UP VALUABLE SPACE ON A CD OR HARD DISK. IN THE EVENT
THAT YOUR USE OF OR INABILITY TO USE THIS SOFTWARE RESULTS IN A
VISITATION FROM MACSBUG, DAMAGE TO OTHER SOFTWARE OR HARDWARE,
THE EXPLOSION OF YOUR MACINTOSH IN A SHOWER OF SPARKS (AS SEEN ON
STAR TREK®) OR INDEED THE END OF WESTERN CIVILIZATION AS WE KNOW IT,
YOUR ATTEMPTS TO ATTACH BLAME ONTO APPLE COMPUTER, INCORPORATED
OR THE AUTHOR OF THIS SOFTWARE WILL BE EXPENSIVE AND UNSUCCESSFUL.
HAVE A NICE DAY.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

How To Call the Functions

The function interfaces are pretty trivial:

AEBuild

OSErr
AEBuild(AEDesc *desc, char *descriptorStr, ...),
vAEBuild(AEDesc *desc, char *descriptorStr, void *args);

AEBuild reads a null-terminated descriptor string (usually a constant, although it could come
from anywhere), parses it and builds a corresponding AEDesc structure. (Don’t worry, I’ll
describe the syntax of the descriptor string in the next section.) If the descriptor string contains
magic parameter-substitution characters (“@”) then corresponding values of the correct type
must be supplied as function arguments, just as with printf.

(vAEBuild is analogous to vprintf: Instead of passing the parameters along with the function,
you supply a va_list, as defined in <stdarg.h>, that points to the parameter list. It’s otherwise
identical.)

AEBuild returns an OSErr. Any errors returned by Apple Event manager routines while building
the descriptor will be sent back to you. The most likely results are memFullErr and
errAECoercionFail. Also likely is aeBuildSyntaxErr, resulting from an incorrect descriptor
string. (Make sure to debug your descriptor strings, perhaps using the demo application, before
you put them in programs!)

The basic version of AEBuild just reports that a syntax error occurred, without giving any
additional information. If you want to know more (perhaps the string came from a user, to
whom you’d like to report a helpful error message) you can use the other version of the library.
This version includes a wee bit of extra code, and two global variables that will contain useful
information after a syntax error:

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
extern AEBuild_SyntaxErrType

AEBuild_ErrCode;
extern long

AEBuild_ErrPos;

AEBuild_ErrCode is an enumerated value that will contain a specific error code. The error
codes are defined in AEBuild.h. AEBuild_ErrPos will contain the index into the descriptor string
at which the error occurred: usually one character past the end of the offending token.

▲ Important AEBuild cannot be called from a Pascal program because it takes
a variable number of arguments. vAEBuild could be called from Pascal, but
you’d have to build the va_list by hand. ▲

AEPrint
OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

AEPrint reads the Apple Event descriptor desc and writes a corresponding descriptor string
into the string pointed to by bufStr. It will write no more than bufSize characters, including
the trailing null character. Any errors returned by Apple Event Manager routines will be
returned to the caller; this isn’t very likely unless the AEDesc structure is somehow corrupt.

The descriptor string produced, if sent to AEBuild, will build a descriptor identical to the
original one. AEPrint tries to detect AERecords that have been coerced to other types and print
them as coerced records. Structures of unknown type that can’t be coerced to AERecords are
dumped as hex data.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Syntax

The real meat of all this, of course, is the syntax of
the descriptor strings. It’s pretty simple: basic data
types like numbers and strings can be described
directly, and then built up into lists and records. I’ve
even provided a pseudo-BNF grammar (next section)
for those of you who actually enjoy reading those
things.

Basic Types

The fundamental data types are:

Type Examples Type-code Description

Integer 1234
-5678

'long' or
'shor'

A sequence of decimal digits,
optionally preceded by a minus sign.

Enum/Type
Code

whos
longint
'long'
<=
'8-)'
‘ZQ 5’
m

'enum'

(Use coercion
to change to
'type')

A magic four-letter code. Will be
truncated or padded with spaces to
exactly four characters. If you put
straight or curly single-quotes
around it, it can contain any
characters. If not, it can’t contain
any of: @‘'“”:-,([{}]) and can’t
begin with a digit.

String “A String.”
“Multiple lines
are okay.”

'TEXT' Any sequence of characters within
open and close curly quotes. Won’t
be null-terminated.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Hex Data «4170706C65»
«0102 03ff
 e b 6 c»

??
(Must be
coerced to
some type)

An even number of hex digits
between French quotes (Option-\,
Option-Shift-\). Whitespace is
ignored.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Coercion

Any basic element (except a hex string) by itself is a descriptor, whose
descriptorType is as given in the table. You can coerce a basic element to
a different type by putting it in parentheses with a type-code placed
before it. Here are some examples:

sing(1234)
type(line)
long(CODE)
hexd(“A String”)
'blob'(«4170706C65»)

◆ Coercions of numeric values are effected by calling AECoerceDesc; if the coercion fails, you’ll
get an errAECoercionFail error returned to you. Coercions of other types just replace the
descriptorType field of the AEDesc. ◆

◆ Hex strings must be coerced, because they have no intrinsic type. ◆

You can also coerce nothing, to get a descriptor with zero-length data:

emty()

Even the type can be omitted, leaving just (), in which case the type is 'null'.

Lists

To make an AEDescList, just enclose a comma-separated list of descriptors in square
brackets. For example:

[123, -456, “et cetera”]
[sing(1234), long(CODE),
 [“wheels”, “within wheels”]]
[]

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
The elements of a list can be of different types, and a list can contain other lists or records (see below) as
elements.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Lists cannot be coerced to other types; the type of a list is always 'list'.

Records

An AERecord is indicated by a comma-separated list of elements enclosed in curly braces. Each
element of a record consists of a keyword (a type-code, as described under Basic Types)
followed by a “:”, followed by a value, which can be any descriptor: a basic type, a list or
another record. For example:

{x:100, y:-100}
{'origin': {x:100, y:-100}, extent: {x:500, y:500},
 cont: [1, 5, 25]}
{}

The default type of a record is 'reco'. Many of the Apple Events Object Model structures are
AERecords that have been coerced to some other data type, like 'indx' or 'whos'. You can
coerce a record structure to any type by preceding it with a type code. For example:

rang{ star: 5, stop: 6}

Again, this coercion is done by calling AECoerceDesc, which has a general method for coercing an
AERecord to any non-primitive type. Attempting to coerce a record to one of the primitive types,
as in

bool{ star: 5, stop: 6 } —Wrong-o, buckwheat!

will get you a loud raspberry from AECoerceDesc.

◆ Yes, you have to use the actual four-letter codes for keywords and object types, instead of
the mnemonic constants. Luckily the codes are semi-mnemonic anyway. I did it this way to
avoid the overhead, both in code size and execution speed, of a symbol table. You can find
the definitions of the constants in the text file “AEObjects.p”, which is part of the Apple
Events Object Support Library. ◆

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Substituting Parameters

To plug your own values into the midst of a descriptor, use the magic “@”
character. You can use “@” anywhere you can put a basic element like an integer. Each “@” is
replaced by a value taken from the parameter list sent to the AEBuild function. The type of
value created depends on the context in which the “@” is used: in particular, how it’s coerced.

Type Coerced to: Type of fn parameter
read:

Comments:

No coercion AEDesc* A plain “@” will be replaced with a
descriptor parameter.

Numeric (bool, shor,
long, sing, doub, exte)

short, short, long, float,
short double, double

Remember that THINK C’s double
corresponds to type 'exte'!

TEXT char* Pointer to a null-terminated C
string.

Any other type long followed by void* Expects a length parameter
followed by a pointer to the
descriptor data.

▲ Important Note particularly: that TEXT parameters must be null-
terminated strings, although the resulting descriptor data will not be null-
terminated; and that the general case expects two parameters: the data’s size
and location. ▲

This mechanism is still a bit limited, and may well be improved in the future.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Grammar

Since no language, however small, can be taken
seriously unless it comes fully equipped with a
formidable-looking BNF grammar specification, I
here present one. No attempt has been made to
prevent Messrs. Backus and/or Naur from rolling
over in their respective graves.

Character Classification:
whitespace ‘ ’, ‘\r’, ‘\n’, ‘\t’
digit 0 … 9
paren, bracket,
braces (,), [,], {, }
single-quote '
double quotes “, ”
hex quotes «, »
colon :
comma ,
at-sign @
identchar any other printable character

Tokens:
ident ::= identchar (identchar | digit)*

—Padded/truncated

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
' character* ' to exactly 4 chars

integer ::= [-] digit+ —Just as in C
string ::= “ (character)* ”
hexstring ::= « (hexdigit | whitespace)* »—Even no. of digits, please

Grammar Rules:

formatstring ::= obj —This is the top level of syntax

obj ::= data —Single AEDesc; shortcut for (data)
structure —Un-coerced structure
ident structure —Coerced to some other type

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

structure ::= (data) —Single AEDesc
[objectlist] —AEList type
{ keywordlist } —AERecord type

objectlist ::= «blank» —Comma-separated list of things
obj [, obj]*

keywordpair ::= ident : obj —Keyword/value pair
keywordlist ::= «blank» —List of said pairs

keywordpair [, keywordpair]*

data ::= @ —Gets appropriate data from fn param
integer —'shor' or 'long' unless coerced
ident —A 4-char type code ('type') unless coerced
string —Unterminated text; 'TEXT' type unless coerced
hexstring—Raw hex data; must be coerced to some type!

There. Now it’s all crystal-clear, right?

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

An Example & Timing Comparison

As an example, I’ll take a C function to generate an
object descriptor (taken from a Pascal example in the
Object Model ERS, fleshed out and with gobs of error
checking added) and turn it into a call to AEBuild. The object
descriptor we want to generate is:

First line of document 'Spinnaker' whose first word is 'April'
and whose second word is 'is'

Then I’ll execute both functions and compare their execution times.

C Code Using Object-Packing Library
OSErr
BuildByHand(AEDesc *dDocument, AEDesc *theResultObj)
{

OSErr err;
AEDesc dObjectExamined, dNum, dWord1, dWord2, dAprilText, dIsText,

 dComparison1, dComparison2, dLogicalTerms, dTheTest, dLineOne, dTestedLines;

dObjectExamined.dataHandle = /* Zero things to start out with so we can safely */
dNum.dataHandle = /* execute our fail code if things don't work out */
dWord1.dataHandle =
dWord2.dataHandle =
dAprilText.dataHandle =
dIsText.dataHandle =
dComparison1.dataHandle =
dComparison2.dataHandle =
dLogicalTerms.dataHandle =
dTheTest.dataHandle =
dLineOne.dataHandle =
dTestedLines.dataHandle =

NIL;

if(err= AECreateDesc('exmn', NIL, 0, &dObjectExamined))
goto fail;

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

if(err= MakeIndexDescriptor(1,&dNum))

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
goto fail;

if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,
false, &dWord1))

goto fail;
if(err= AECreateDesc('TEXT', "April", 5, &dAprilText))

goto fail;

AEDisposeDesc(&dNum);
if(err= MakeIndexDescriptor(2,&dNum))

goto fail;
if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,

true, &dWord2))
goto fail;

if(err= AECreateDesc('TEXT', "is", 2, &dIsText))
goto fail;

if(err= MakeCompDescriptor('= ', &dAprilText, &dWord1, true, &dComparison1))
goto fail;

if(err= MakeCompDescriptor('= ', &dIsText, &dWord2, true, &dComparison2))
goto fail;

if(err= AECreateList(NIL, 0, false, &dLogicalTerms))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 1, dComparison1))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 2, dComparison2))
goto fail;

AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);

if(err= MakeLogicalDescriptor(&dLogicalTerms, 'AND ', true, &dTheTest))
goto fail;

if(err= MakeObjDescriptor(classLine,&dDocument,formTest,&dTheTest,true,
&dTestedLines))

goto fail;

if(err= MakeIndexDescriptor(1,&dLineOne))
goto fail;

if(err= MakeObjDescriptor(classLine, &dTestedLines, formIndex, &dLineOne,
true, theResultObj))

goto fail;
return noErr;

fail: /* Clean up in case we couldn't build it */
AEDisposeDesc(theResultObj);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
AEDisposeDesc(&dObjectExamined);
AEDisposeDesc(&dNum);
AEDisposeDesc(&dWord1);
AEDisposeDesc(&dWord2);
AEDisposeDesc(&dAprilText);
AEDisposeDesc(&dIsText);
AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);
AEDisposeDesc(&dLogicalTerms);
AEDisposeDesc(&dTheTest);
AEDisposeDesc(&dLineOne);
AEDisposeDesc(&dTestedLines);

return err;
}

MPW 3.2b5 C compiled this into 816 bytes of object code.

The average time to execute this function, on a Mac IIfx, is 0.0184 seconds. Use this figure for comparison
only; your times may vary. The timing is especially dependent on the number of blocks in the heap, since
so many block allocations and disposals are happening.

Descriptor String
obj{ want:type('line'),
 from: obj{ want: type('line'), from: @, form: 'test',
 seld: logi{
 term: [comp{ relo:=, obj1:“April”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},
 comp{ relo:=, obj1:“is”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}
],
 logc:AND
 }
 },
 form: 'indx',
 seld: 1
}

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEBuild Call
char descriptor[] = /* Same descriptor string as above. Note clever */
"obj{ want:type('line')," /* method used to break string across lines. */
 "from: obj{ want: type('line'), from: @, form: 'test'," /* Note parameter here */
 "seld: logi{"
 "term: [comp{ relo:=, obj1:“April”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},"
 "comp{ relo:=, obj1:“is”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}"
 "],"
 "logc:AND"
 "}"
 "},"
 "form: 'indx',"
 "seld: 1"
"}";

void PackWordDesc(AEDesc *dDocumentObject) /* “Spinnaker” descriptor is a parameter */
{

err = AEBuild(&theResultObj,
descriptorString,
dDocumentObject); /* AEDesc* parameter for "@" */

}

MPW 3.2b5 C compiled this into 42 bytes of object code, plus 310 bytes of data storage for the string.

The average time to execute this function, on a Mac II, is 0.0097 seconds. Use this figure for comparison
only; your times may vary. The timing is dependent on the number of blocks in the heap, since heap blocks
are being allocated and resized.

Timing Conclusions

With previous versions of this library, there was a 70% increase in
execution time when using the AEBuild routine. After delivering the bad news, I
wrote:

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

However, if speed does become an issue, there is always the option of
turbocharging AEBuild by having it directly build descriptors without going
through the Apple Event Manager functions at all. This would save an incredible
number of Memory Manager calls and probably increase performance severalfold.
Anyone using AEBuild will get all these improvements for free.

This is exactly what I did in version 1.1. In fact, I wrote a library (AEStream) to do it, so you can
do it too. It’s easy.

AEBuild is now almost twice as fast (89% faster) as the using the Apple Event Manager
and/or Object Packing Library routines. (This means that AEStream was responsible for a
threefold speed-up in AEBuild. Not bad, when you take into account other overhead like parsing
the format string!)

Needless to say, if you were already using AEBuild you get this speed increase absolutely free.
Enjoy!

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Demo Program

I’ve included a demonstration MPW tool in the
distribution. This is a program I used to debug the
library. It reads each command-line argument, uses
AEBuild to translate it into an AEDesc, uses AEPrint
to translate the AEDesc back into a string, and prints
each resulting string. If you don’t give any command-
line arguments it will ask you to enter a line from the
standard input. Error codes are reported, including
syntax-error messages. The source code is provided
in case you want to see how the functions are called.

▲ Warning The demo tool does not handle parameter substitution (the
“@” character). If you try to substitute parameters, messy and unpleasant
things may happen. Use some numeric value in place of parameters, and then
replace it with “@”s after you paste the string into your program. ▲

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Header Files

Here for your convenience are printouts of the
header files as of 28 January 1991.

AEBuild.h
/*
* AEBuild.h Copyright ©1991 Apple Computer, Inc.
*/

#define aeBuild_SyntaxErr 12345 /* Let's get an Official OSErr code someday */

typedef enum{ /* Syntax Error Codes: */
aeBuildSyntaxNoErr = 0, /* (No error) */
aeBuildSyntaxBadToken, /* Illegal character */
aeBuildSyntaxBadEOF, /* Unexpected end of format string */
aeBuildSyntaxNoEOF, /* Unexpected extra stuff past end */
aeBuildSyntaxBadNegative, /* "-" not followed by digits */
aeBuildSyntaxMissingQuote, /* Missing close "'" */
aeBuildSyntaxBadHex, /* Non-digit in hex string */
aeBuildSyntaxOddHex, /* Odd # of hex digits */
aeBuildSyntaxNoCloseHex, /* Missing "»" */
aeBuildSyntaxUncoercedHex, /* Hex string must be coerced to a type */
aeBuildSyntaxNoCloseString, /* Missing "”" */
aeBuildSyntaxBadDesc, /* Illegal descriptor */
aeBuildSyntaxBadData, /* Bad data value inside (…) */
aeBuildSyntaxNoCloseParen, /* Missing ")" after data value */
aeBuildSyntaxNoCloseBracket, /* Expected "," or "]" */
aeBuildSyntaxNoCloseBrace, /* Expected "," or "}" */
aeBuildSyntaxNoKey, /* Missing keyword in record */
aeBuildSyntaxNoColon /* Missing ":" after keyword in record */
aeBuildSyntaxCoercedList /* Cannot coerce a list */

} AEBuild_SyntaxErrType;

OSErr
AEBuild(AEDesc *dst, char *src, ...),
vAEBuild(AEDesc *dst, char *src, void *args);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEBuildGlobals.h
/*
* AEBuildGlobals.h Copyright ©1991 Apple Computer, Inc.
*/

extern AEBuild_SyntaxErrType
AEBuild_ErrCode; /* Examine after AEBuild returns a syntax error */

extern long
AEBuild_ErrPos; /* Index of error in format string */

AEPrint.h
/*
* AEPrint.h Copyright ©1991 Apple Computer, Inc.
*/

OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

The AppleEvent Builder/Printer

